REMARKS ON COMPLETE DEFORMABLE HYPERSURFACES IN R⁴ #### HIROSHI MORI Dedicated to Professor T. Otsuki on his 75th birthday and to Professor S. Ishihara on his 70th birthday #### Abstract It is shown that, for each pair $\{k_1(u), k_2(v)\}$ of smooth functions on R with some conditions, there exists a family of complete nonruled deformable hypersurfaces $M(\lambda, k_1, k_2), -\frac{1}{2} < \lambda < \frac{1}{2}$, in Euclidean space R^4 with rank $\rho = 2$ almost everywhere. This is an answer to one of the problems in [3]. #### 1. Introduction and statement of results It is an interesting problem to determine the deformability of an isometric immersion f of a connected Riemannian manifold M^n into Euclidean (n+1)-space R^{n+1} , $n \ge 3$. Let ρ be the rank of the second fundamental form of f. It is known (see [2]) that f is rigid (i.e., not deformable) if $\rho \ge 3$ by the Beez-Killing Theorem, and highly deformable if $\rho \le 1$. The situation for constant rank $\rho = 2$ is quite complicated. Sbrana and Cartan divided this situation into three different types, and looked into it by a detailed local analysis (see [1], [4]). It has been shown by Dajczer and Gromoll [3] that for $n \ge 3$ a complete hypersurface M^n in R^{n+1} whose set of all the geodesic points does not disconnect M^n , is rigid unless it contains either an open subset $L^3 \times R^{n-3}$ with L^3 unbounded or a complete ruled strip. But the three-dimensional case of this result remains an open problem. In this paper, we construct a one-parameter family of complete nonruled deformable hypersurfaces in R^4 with rank $\rho = 2$ almost everywhere depending on two functions on the real line R with some conditions. **Theorem.** Let $k_j(x)$, j=1,2, be smooth functions on R satisfying that $-\frac{\pi}{4} < \int_0^x k_j(x) \, dx < \frac{\pi}{4}$, j=1,2, $\forall x \in R$ and that $k_1(u) > 0$, $k_2(v) < 0$ at all points u,v except for isolated ones. For each constant Received November 3, 1992. - λ , $-\frac{1}{2} < \lambda < \frac{1}{2}$, there exists an immersion $f(\lambda, k_1, k_2)$ of R^3 into R^4 satisfying the following conditions: - 1. The induced metric $ds^2(\lambda, k_1, k_2)$ on R^3 through $f(\lambda, k_1, k_2)$ is complete. - 2. For any two constants λ , μ in $(-\frac{1}{2}, \frac{1}{2})$ the Riemannian manifolds $(R^3, ds^2(\lambda, k_1, k_2))$ and $(R^3, ds^2(\mu, k_1, k_2))$ are isometric. - 3. For any two pairs of functions $\{k_1(x), k_2(x)\}$ and $\{\overline{k}_1(x), \overline{k}_2(x)\}$ and for two constants λ , μ in $(-\frac{1}{2}, \frac{1}{2})$ the isometric immersions $f(\lambda, k_1, k_2)$: $(R^3, ds^2(\lambda, k_1, k_2)) \rightarrow R^4$ and $f(\mu, \overline{k}_1, \overline{k}_2)$: $(R^3, ds^2(\mu, \overline{k}_1, \overline{k}_2)) \rightarrow R^4$ are congruent if and only if $\overline{k}_j(x) = k_j(\varepsilon_j x + a_j)$ for $\forall x \in R$, where $\varepsilon_j = \pm 1$ and a_j , j = 1, 2 are constants. - 4. The rank $\rho(\lambda, k_1, k_2)$ of the second fundamental form of the immersion $f(\lambda, k_1, k_2)$ at each point (u, v, t) of R^3 is 2 (resp. ≤ 1) when $k_1(u)k_2(v) < 0$ (resp. $k_1(u)k_2(v) = 0$). We are in the C^{∞} category and refer the readers to [2] for the terminology. ### 2. Preliminaries First, we will recall some basic definitions. Let $f: M^n \to R^{n+1}$ be an isometric immersion of a connected *n*-dimensional Riemannian manifold M^n into the Euclidean space R^{n+1} . The isometric immersion f is said to be *rigid* if, for any other isometric immersion $h: M^n \to R^{n+1}$, there exists a motion τ of R^{n+1} such that $h = \tau \circ f$. The isometric immersion $f: M^n \to R^{n+1}$ which is not rigid is said to be *deformable*. Let $k_j(x)$, j=1,2, be functions as in the Theorem. We define the two functions $\theta(u)$ and $\phi(u)$ by $$\theta(u) = \int_0^u k_1(x) dx, \qquad \phi(v) = \int_0^v k_2(x) dx$$ for $u, v \in R$. For each constant λ in $(-\frac{1}{2}, \frac{1}{2})$ we define the functions $\theta(u, \lambda)$, $\phi(v, \lambda)$, $k_1(u, \lambda)$, $k_2(v, \lambda)$ by (2.1) $$\theta(u,\lambda) = \arcsin\left\{\sin\theta(u)/\sqrt{1-\lambda}\right\}, \quad u \in R,$$ (2.2) $$\phi(v,\lambda) = \arcsin\left\{\sin\phi(v)/\sqrt{1+\lambda}\right\}, \quad v \in R,$$ (2.3) $$k_1(u,\lambda) = \frac{d}{du}\theta(u,\lambda), \qquad u \in R;$$ (2.4) $$k_2(u,\lambda) = \frac{d}{dv}\phi(v,\lambda), \qquad v \in R.$$ Denote by $c_1(u,\lambda)$, $e_1(u,\lambda)$, $e_2(u,\lambda)$ (resp. $c_2(v,\lambda)$, $e_3(v,\lambda)$, $e_4(v,\lambda)$) the curve in $R^2 \times \{(0,0)\}$ (resp. $\{(0,0)\} \times R^2 \subset R^4$ and its Frenet frame with curvature $k_1(u,\lambda)$ (resp. $k_2(v,\lambda)$) and initial conditions: $$c_1(0, \lambda) = (0, \dots, 0), \quad e_1(0, \lambda) = (1, 0, 0, 0), \quad e_2(0, \lambda) = (0, 1, 0, 0),$$ (resp. $$c_2(0, \lambda) = (0, \dots, 0), c_3(0, \lambda) = (0, 0, 1, 0), c_4(0, \lambda) = (0, 0, 0, 1)$$). We define a mapping $f_1: R^3 \to R^4$ by $$\begin{split} f_{\lambda}(u\,,\,v\,,\,t) &= c_{1}(u\,,\,\lambda) \\ &+ t\sqrt{\frac{1-\lambda}{2}} \{ \sin\theta(u\,,\,\lambda) e_{1}(u\,,\,\lambda) + \cos\theta(u\,,\,\lambda) e_{2}(u\,,\,\lambda) \} \,, \\ &+ c_{2}(v\,,\,\lambda) \\ &+ t\sqrt{\frac{1+\lambda}{2}} \{ \sin\phi(v\,,\,\lambda) e_{3}(v\,,\,\lambda) + \cos\phi(v\,,\,\lambda) e_{4}(v\,,\,\lambda) \} \,, \end{split}$$ for $u, v, t \in R$. Using (2.1)–(2.4) we can show that $$\begin{split} \frac{\partial}{\partial u} f_{\lambda}(u\,,\,v\,,\,t) &= e_{1}(u\,,\,\lambda)\,, \qquad \frac{\partial}{\partial v} f_{\lambda}(u\,,\,v\,,\,t) = e_{3}(v\,,\,\lambda)\,, \\ \frac{\partial}{\partial t} f_{\lambda}(u\,,\,v\,,\,t) &= \sqrt{\frac{1-\lambda}{2}} \{\sin\theta(u\,,\,\lambda)e_{1}(u\,,\,\lambda) + \cos\theta(u\,,\,\lambda)e_{2}(u\,,\,\lambda)\} \\ &+ \sqrt{\frac{1+\lambda}{2}} \{\sin\phi(v\,,\,\lambda)e_{3}(v\,,\,\lambda) + \cos\phi(v\,,\,\lambda)e_{4}(v\,,\,\lambda)\}\,, \end{split}$$ and that $$\begin{split} \xi_{\lambda}(u\,,\,v) &= \left\{\cos^2\theta(u) + \cos^2\phi(v)\right\}^{-1/2} \\ &\quad \cdot \left\{\sqrt{1+\lambda}\cos\phi(v\,,\,\lambda)e_2(u\,,\,\lambda) - \sqrt{1-\lambda}\cos\theta(u\,,\,\lambda)e_4(v\,,\,\lambda)\right\} \end{split}$$ is a field of unit normals along f_{λ} . From this observation together with (2.1)–(2.4) it follows that (2.6) $$f_{\lambda}^* ds_{\text{can}}^2 = du^2 + dv^2 + \sqrt{2} \sin \theta(u) du dt + \sqrt{2} \sin \phi(v) dv dt + dt^2$$, so that (2.7) $$\left\langle \frac{\partial^2 f_{\lambda}}{\partial u^2}, \xi_{\lambda} \right\rangle = k_1(u) \cos \theta(u) \sqrt{\frac{\cos^2 \phi(v) + \lambda}{(\cos^2 \theta(u) - \lambda)(\cos^2 \theta(u) + \cos^2 \phi(v))}},$$ $$\left\langle \frac{\partial^2 f_{\lambda}}{\partial v^2} \,,\, \xi_{\lambda} \right\rangle = -k_2(v) \cos \phi(v) \sqrt{\frac{\cos^2 \theta(u) - \lambda}{(\cos^2 \phi(v) + \lambda (\cos^2 \theta(u) + \cos^2 \phi(v))}} \,,$$ $$(2.9) \quad \left\langle \frac{\partial^2 f_{\lambda}}{\partial u \partial v}, \, \xi_{\lambda} \right\rangle = \left\langle \frac{\partial f_{\lambda}}{\partial u \partial t}, \, \xi_{\lambda} \right\rangle = \left\langle \frac{\partial^2 f_{\lambda}}{\partial v \partial t}, \, \xi_{\lambda} \right\rangle = \left\langle \frac{\partial^2 f_{\lambda}}{\partial t^2}, \, \xi_{\lambda} \right\rangle = 0.$$ ### 3. Proof of Theorem We will maintain the notation as in the previous section. We will prove the first assertion. First, we see that, for each constant λ , $-\frac{1}{2} < \lambda < \frac{1}{2}$ the mapping f_{λ} given by (2.5) is an immersion by virtue of (2.6) and $$(3.1) -\pi/4 < \theta(u), \phi(v) < \pi/4, \quad \forall u, v \in R.$$ Set $g = f_{\lambda}^* ds_{\text{can}}^2$, and denote by g_{ij} the components of g with respect to the global coordinates $x_1 := u$, $x_2 := v$ and $x_3 := t$ on R. Then the solutions of the equation in ρ : $\det(\rho \delta_{ij} - g_{ij}) = 0$ are $\rho = 1$, $1 \pm \{[\sin^2 \theta(u) + \sin^2 \phi(v)]/2\}^{1/2}$. Using (3.1) we have $$(3.2) ag_{can}(X, X) \le g(X, X) \le bg_{can}(X, X)$$ for all tangent vectors X in R^3 , where $g_{\rm can}$ is the canonical Riemannian metric on R^3 , and a and b are positive constants satisfying that $a^2 = 1 - 1/\sqrt{2}$, $b^2 = 1 + 1/\sqrt{2}$. Thus (3.2) implies that the first assertion is true. The second assertion is valid because of (2.6). The third assertion is proved as follows. Let $\overline{\theta}(u,\lambda)$, $\overline{\phi}(v,\lambda)$, $\overline{k}_1(u,\lambda)$, $\overline{k}_2(v,\lambda)$, $\overline{c}_1(u,\lambda)$, $\overline{e}_i(u,\lambda)$, i=1,2, $\overline{c}_2(v,\lambda)$, $\overline{e}_i(v,\lambda)$, i=3,4, and \overline{f}_{λ} be the corresponding functions, curves, Frenet frames and the mappings as in the previous section for $\overline{k}_1(u)$, $\overline{k}_2(v)$, and μ . Suppose that there exist a diffeomorphism ψ of R^3 onto itself and an isometry ρ of (R^4, ds_{can}^2) such that (3.3) $$\rho \circ f_{\lambda}(u, v, t) = \overline{f}_{\mu} \circ \psi(u, v, t).$$ We can show that, for each fixed λ , $-\frac{1}{2} < \lambda < \frac{1}{2}$, a curve $u = u(\sigma)$, $v = v(\sigma)$, $t = t(\sigma)$, $\sigma \in R$ defines a geodesic in (R^3, g) and $(R^4, ds_{\rm can}^2)$ if and only if $u(\sigma) = {\rm const}$, $v(\sigma) = {\rm const}$, and $t(\sigma) = \pm \sigma + {\rm const}$, provided that $k_1(u(\sigma_0))k_2(v(\sigma_0)) < 0$ for some σ_0 . Notice that, for each fixed $u,v\in R$, the mapping $t\in R\to f_\lambda(u,v,t)$ (resp. $\overline{f}_\mu(u,v,t)$) defines a geodesic in $(R^4,ds_{\rm can}^2)$, and that for almost all (u,v) in R^2 , $\overline{k}_1(\psi_1(u,v,0))\overline{k}_2(\psi_2(u,v,0))<0$, where $\psi_j(u,v,0)$ is the jth component of $\psi(u,v,0)\in R^3$. From these observations, we may assume, by adding constants to the parameters and rotating $f_i(R^3)$ around the origin if necessary, that $$\rho = identity,$$ $$(3.4) \qquad \psi(0, 0, 0) = (0, 0, 0), \quad \psi_u(0, 0, 0) = (1, 0, 0),$$ $$\psi_v(0, 0, 0) = (0, 1, 0), \quad \psi_t(u, v, t) = (0, 0, 1),$$ $\forall u, v, t \in R$, where ψ_u , ψ_v , and ψ_t are the partial derivatives of ψ with respect to u, v, and t respectively. From this we find that $$(3.5) \psi(u, v, t) = (x(u, v), y(u, v), t) \quad \forall u, v, t \in R,$$ where x(u, v), y(u, v) are functions of u and v. On the other hand, for each fixed $t \in R$, the mapping $\iota(t)$: $R^2 \to R^3$, $(u,v) \mapsto (u,v,t)$ is an isometric imbedding of (R^2,g_{can}) into $(R^3,f_{\lambda}^*ds_{\text{can}}^2)$, where g_{can} is the Euclidean metric on R^2 . Combining this fact with (2.5), (3.5) shows that the mapping $(u,v) \mapsto (x(u,v),y(u,v))$ is an isometry of (R^2,g_{can}) . Thus by this remark and (3.4), (3.6) $$\psi(u, v, t) = (u, v, t) \quad \forall u, v, t \in R.$$ From (3.3), (3.4), and (3.6) it follows that (3.7) $$\begin{cases} \overline{k}_i(x) = k_i(\varepsilon_i x + a_i), & \varepsilon_i, a_i : \text{ constants, with } \varepsilon_i = \pm 1, \\ \mu = \lambda \end{cases}$$ for each $x \in R$. Conversely, it can be easily shown that if (3.7) is satisfied, then we have (3.3) for some diffeomorphism $(u, v, t) \mapsto \psi(u, v, t)$. This completes the proof of the third assertion. The fourth assertion follows easily from (2.7)–(2.9). ### Acknowledgment The author would like to thank Professor M. Dajzczer for useful conversations. ## References - [1] É. Cartan, La déformation des hypersurfaces dans l'espace euclidean réel à n dimensions, Bull. Soc. Math. France 44 (1916) 65-99. - [2] M. Dajczer et al., Submanifolds and isometric immersions, Publish or Perish, Houston, TX, 1990. - [3] M. Dajczer & D. Gromoll, Rigidity of complete euclidean hypersurfaces, J. Differential Geometry 31 (1990) 404-416. - [4] V. Sbrana, Sulle varietá ad n-1 dimensioni deformabili nello spazio ad n dimensioni, Rend. Circ. Mat. Palermo 27 (1909) 1-45. JOETSU UNIVERSITY OF EDUCATION JOETSU, JAPAN