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Abstract

‘It is shown that, for each pair {k (%), k,(v)} of smooth functions on
R with some conditions, there exists a family of complete nonruled de-
formable hypersurfaces M(4, k, k,), —% <A< % , in Euclidean space

R* with rank p =2 almost everywhere. This is an answer to one of the
problems in [3].

1. Introduction and statement of results

It is an interesting problem to determine the deformability of an isomet-
ric immersion f of a connected Riemannian manifold M” into Euclidean
(n+ 1)-space R™' n>3. Let p be the rank of the second fundamental
form of f. It is known (see [2]) that f is rigid (i.e., not deformable)
if p > 3 by the Beez-Killing Theorem, and highly deformable if p < 1.
The situation for constant rank p = 2 is quite complicated. Sbrana and
Cartan divided this situation into three different types, and looked into it
by a detailed local analysis (see [1], [4]). '

It has been shown by Dajczer and Gromoll [3] that for » > 3 a complete
hypersurface M” in R™"' whose set of all the geodesic points does not
disconnect M" , is rigid unless it contains either an open subset L* x R" >
with L* unbounded or a complete ruled strip. But the three-dimensional
case of this result remains an open problem.

In this paper, we construct a one-parameter family of complete nonruled
deformable hypersurfaces in R* with rank p = 2 almost everywhere de-
pending on two functions on the real line R with some conditions.

Theorem. Let kj(x), j=1,2, be smooth functions on R satisfying
that —% < [fk(x)dx < %, j=1,2, Vx € R and that k() > 0,
k,(v) < O at all points u, v except for isolated ones. For each constant
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A, —% <A< % there exists an immersion f(A, k , k,) of R® into R*
satisfying the following conditions:

1. The induced metric dsz(/l, k, ., k,) on R? through f(4, k, , k,) is
complete.

2. For any two constants A, i in (—% , %) the Riemannian manifolds
(R, ds*(2, k., k) and (R, ds*(u, k k,)) are isometric.

3. For any two pairs of functions {k, ( ), k ( )} and {k (x), ky(x)}
and for two constants A, p in —— , 2) the isometric immersions
fA, k., k) (R, ds*A, k., k, )) — R* and f(u, Kk, k,):
(R?, ds*(u, k. ky) — R* are congruent if and only if Ej(x) =
ki(e;x +a;) for ¥x € R, where g =+l and a;,j =1,2 are
constants. :

4. The rank p(A, k,, k,) of the second fundamental form of the im-
mersion f(4, k,, k,) at each point (u,v,t) of R is 2 (resp.
< 1) when k,(u)k,(v) <0 (resp. k (u)k,(v)=0).

We are in the C™ category and refer the readers to [2] for the terminol-
ogy. :

2. Preliminaries

First, we will recall some basic definitions. Let f: M” — R™*! be an
isometric immersion of a connected n-dimensional Riemannian manifold
M" into the Euclidean space R"! . The isometric immersion f is said
to be rigid if, for any other isometric immersion 4: M" — R™' | there
exists a motion 7 of R™! such that A = 7o f. The isometric immersion
f: M" - R™! which is not rigid is said to be deformable.

Let kj(x) , J =1, 2, be functions as in the Theorem. We define the
two functions #(u) and ¢(u) b

0(u)=/0uk1(x)dx, ¢(v):/ov ke, () dx

for u, v € R. For each constant 4 in (-1, 1) we define the functions
e(u’ A') ’ ¢('U ’ A‘) ’ k](u’ A‘) ’ k2('l) ’ 1‘) by

(2.1) B(u,/l)=arcsin{s1n0 /\/1— } uER,

(2.2) $(v, A) = arcsin {sind)(v)/\/l +/1}, veR,
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(2.3) k (1, 2) = é‘%e(u,z), ueR;
(2.4) ky(u, ) = %4)@, 3, wveR

Denoteby ¢, (u, 1), e,(u, 4), e,(u, A) (resp. ¢,(v, 1), e5(v, 1), ¢,(v, A))
the curve in R* x {(0, 0)} (resp. {(0, 0)} sz) c R* and its Frenet frame
with curvature k,(u, A) (resp. k,(v, 4)) and initial conditions:
¢,(0,4)=(,---,0), ¢(0,4)=(1,0,0,0), e,(0,4)=(0,1,0,0),

(resp. ¢,(0,4)=(0, ---, 0), ¢(0,4)=(0,0,1,0), ¢,(0,4)=(0, 0,0, 1)).
We define a mapping f;: R* - R* by

(2.5)
fiu,v,0)=c,(u, )

+¢,(v, )

1+4
2
for u,v,te R. Using (2.1)~(2.4) we can show that

+1 {sin@(v, A)es(v, 1) + cosop(v, A)e,(v, A)},

d d
%ﬁ(u,v,t)=el(u,2), a—q;]}(u,v,t)=e3(v,/1),

%A(u, v, 1) = \/? {sin6(u, A)e,(u, 4) + cosO(u, Ae,(u, A}
+Vl;lhm¢w,MQ@,D+C“¢@’DQW’DL

and that
&,(u, v) = {cos’ O(w) + cos’ $(v))}”
AV 1+ Acosd(v, Ae,(u, A) — V1 —AicosO(u, Ae,(v, 1)}

is a field of unit normals along f;. From this observation together with
(2.1)=(2.4) it follows that

(2.6) f; ds’._ = du’ +dv’ +v2sin 0(u) dudt + V2 sin $(v) dv dt +dt”,

so that
(2.7)

ﬁ . cos? dv)+ 4 :
< o’ ¢l> ~h C°se(u)\J (G052 60a) — A)(cos? 0(a) + o> $(0))

1/2
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(2.8)

_62_f/1 _ cos® O(u) — A
< 90’ é‘> = Tlalcos M\’ (cos” $(v) + A(cos” B(u) + cos” p(v))

8’ f, _/ 8f, 8’f, _ /8], _
(2‘9) <6u3/’10 >£A> - <8u_6/1t’£’1> = <Walt,é}'> - <_6[_21’él =0.

3. Proof of Theorem

We will maintain the notation as in the previous section. We will prove
the first assertion. First, we see that, for each constant- 4, ——% <A< %
the mapping f, given by (2.5) is an immersion by virtue of (2.6) and

(3.1) —n/4 < 0®u), p(v) < /4, Yu,veR.

Set g = f; dsczan , and denote by g, ; the components of g with respect
to the global coordinates x, := u, x, := v and x; := ¢ on R. Then
the solutions of the equation in p: det(pd, = gj)=0are p=1, 1+
{[sin® O(x) + sin® $(v)]/2}"/% . Using (3.1) we have

(3.2) a8 (X, X) < g(X, X) < bg, (X, X)

for all tangent vectors X in R , where g is the canonical Riemannian
metric on R3, and a and b are positive constants satisfying that a* =
1-1/V2, PP=1+1 /v2. Thus (3.2) implies that the first assertion is
true.

The second assertion is valid because of (2.6).

The third assertion is proved as follows. Let 8(u, 1), ¢(v, A), k,(u, 4),
ky(v,3), T (u,4), g (u,3), i =1,2, T,(v,4), g(v,4), i = 3,4,
and f, be the corresponding functions, curves, Frenet frames and the
mappings as in the previous section for k,(u), k,(v), and u.

Suppose that there exist a diffeomorphism yw of R® onto itself and an
isometry p of (R*, dsczan) such that

(3.3) pofiu,v,0)=Ff,op,v,1).

We can show that, for each fixed A, —3 <A < 1, acurve u = u(o),
v=v(0), t=1t(g), 0 € R defines a geodesic in (R3 , g) and (R*, dsczan)
if and only if u(g) = const, v(g) = const, and ¢(g) = +0 + const, pro-
vided that k,(u(g,))k,(v(g,)) < O for some g,. Notice that, for each
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fixed u,v € R, the mapping t € R — f,(u,v, 1) (resp. 7ﬂ(u, v, 1)
defines a geodesic in (R*, dSZan) , and that for almost all (¢, v) in R,
ky(wy(u; v, 0)ky(w,(u, v, 0)) < 0, where w,(u, v, 0) is the jth compo-
nent of y(u, v, 0) eR®.

From these observations, we may assume, by adding constants to the
parameters and rotating fi(Rg') around the origin if necessary, that

p = identity,
(3.4) ¥(0,0,0)=(0,0,0), ¥,0,0,0)=(1,0,0),
¥,(0,0,00=(0,1,0), w,(u,v,6)=(0,0,1),

Vu,v,t € R, where y¥,, ¥,, and y, are the partial derivatives of ¥
with respect to u, v, and ¢ respectively. From this we find that

(3'5) z//(u,v,t)=(x(u,v),y(u,v),t) Vu,v,t€R,

where x(u, v), y(u, v) are functions of # and v.

On the other hand, for each fixed ¢ € R, the mapping 1(f): R &
R, (u,v) — (u,v,t) is an isometric imbedding of (R?, 8.,y) into
(R3 , f; dsczan) , where g is the Euclidean metric on R?. Combining this
fact with (2.5), (3.5) shows that the mapping (u, v) — (x(u, v), y(u, v))
is an isometry of (R2 » &ean) - Thus by this remark and (3.4),

(3.6) vu,v,t)y=w,v,t) Yu,v,t€eR.

From (3.3), (3.4), and (3.6) it follows that

(3.7) { k(x) =k,(ex +a;), g;, a;: constants, with ¢, = £1,
n==4

for each x € R.

Conversely, it can be easily shown that if (3.7) is satisfied, then we have
(3.3) for some diffcomorphism (u, v, t) — w(u, v, t). This completes
" the proof of the third assertion.

The fourth assertion follows easily from (2.7)—(2.9).
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